

IV Semester B.A./B.Sc. Examination, September 2020 (CBCS) (Semester Scheme) (F + R) (2015-16 and Onwards) MATHEMATICS (Paper – IV)

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART – A

Answer any five questions.

 $(5 \times 2 = 10)$

- 1. a) Prove that every subgroup of an abelian group is normal.
 - b) Verify whether $f: G \to G'$ defined by $f(x) = 2^x$ is homomorphism or not.
 - c) Find a_0 in the Fourier series of $f(x) = e^{-ax}$ in $(-\pi, \pi)$.
 - d) Show that $f(x, y) = x^3 + y^3 3x 12y + 20$ is maximum at (-1, -2).
 - e) Find the Laplace transform of cos5tsint.
 - f) Find $L^{-1} \left[\frac{s+2}{s^2 2s + 5} \right]$.
 - g) Solve: $\frac{d^4y}{dx^4} 16y = 0$

LIBRARY

h) Find the value of 'y' from the simultaneous equations $\frac{dx}{dt} + 7x - y = 0$ and $\frac{dy}{dt} + 2x + 5y = 0$.

PART - B

Answer one full question.

 $(1 \times 15 = 15)$

- 2. a) Prove that the product of any two normal subgroups of a group is again a normal subgroup.
 - b) Let $f: G \to G'$ be an homomorphism of a group G into group G' with kernel K. Then f is one-one if and only if $K = \{e\}$, where 'e' is the identify in G.
 - c) If $f: (z_8, t_8) \rightarrow (z_2, t_2)$ is given by f(x) = r where r is the remainder when x is divided by 2. Show that f is homomorphism.

- 3. a) Prove that a subgroup H of a group G is normal if and only if every right coset of H in G is a left coset of H in G.
 - b) Let G be a group and H be a normal subgroup of G, then prove that G/H is a homomorphic image of G with H as its Kernel.
 - c) State and prove fundamental theorem of homomorphism.

PART - C

Answer any two full questions.

 $(2 \times 15 = 30)$

- 4. a) Find the Fourier series of $f(x) = 1 x^2$ in $-1 \le x \le 1$.
 - b) Obtain the Fourier half range cosine series for the function 'f' defined by $f(x) = \sin x$ in $(0, \pi)$.
 - c) Obtain Taylor's expansion of tan⁻¹ (y/x) about the point (1, 1) upto second degree terms.

OR BMS

- 5. a) Find the extreme values of the function $f(x, y) = 1 + \sin(x^2 + y^2)$.
 - b) Show that a rectangular box of maximum volume with prescribed surface area is a cube.
 - c) Obtain the Fourier series for e^x in the interval $(-\pi, \pi)$.
- 6. a) Find the Laplace transform of e^{2t} ($2t^2 3t + 4$).
 - b) Find L{f(t)} if f(t) = $\begin{cases} t & 0 < t < 4 \\ 5 & t > 4 \end{cases}$.
 - c) Find $L^{-1} \left[\frac{2s^2 6s + 5}{(s 1)(s 2)(s 3)} \right]$.
- 7. a) Find L $\left[\frac{\sin^2 t}{t}\right]$.
 - b) By using the convolution theorem prove that $L\left\{\int_0^t f(t)dt\right\} = \frac{1}{s}L\{f(t)\}.$
 - c) Find $L^{-1} \left[s \log \left(\frac{s+4}{s-4} \right) \right]$.

PART - D

Answer one full question.

 $(1 \times 15 = 15)$

- 8. a) Solve: $(2D^2 + 2D + 3)y = x^2 + 2x 1$.
 - b) Solve $x^2y'' + xy' 9y = 0$ given that x^3 is a part of the complimentary function.
 - c) Solve : $y'' + 2y' + 5y = e^{-x} \sin 2x$.

OR

- 9. a) Solve: $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = (1+x)^2$.
 - b) Solve the simultaneous differential equation $\frac{dx}{dt} = 3x y$ and $\frac{dy}{dt} = x + y$. c) Solve : $x^2y_2 + xy_1 y = x^2e^x$, x > 0 by the method of variation of
 - parameters.

BMSCW LIBRARY

BMSCW LIBRARY